Herzlich Willkommen beim beam-Verlag in Marburg, dem Fachverlag für anspruchsvolle Elektronik-Literatur.


Wir freuen uns, Sie auf unserem ePaper-Kiosk begrüßen zu können.

Aufrufe
vor 10 Monaten

8-2018

  • Text
  • Elektromechanik
  • Antriebe
  • Stromversorgung
  • Feldbusse
  • Kommunikation
  • Robotik
  • Qualitaetssicherung
  • Bildverarbeitung
  • Automatisierungstechnik
  • Sensorik
  • Visualisieren
  • Regeln
  • Msr
  • Boards
  • Systeme
  • Sbc
  • Ipc
  • Pc
  • Software
  • Automation
Fachzeitschrift für Industrielle Automation, Mess-, Steuer- und Regeltechnik

Aktuelles VISION

Aktuelles VISION 2018: Deep Learning Feuerwerk erwartet Aussteller präsentieren Stand der Deep Learning Technologie auf der VISION 2018/ Ergänzung und Alternative zur etablierten Bildverarbeitung Demonstrator schwieriger Inspektionsaufgabe als Deep- Learning-Anwendung mit FPGA mit einer hohen Datenrate von über 220 MB (Bildquelle: Silicon Software) Angetrieben von immer schnellerer Rechenleistung und methodischen Durchbrüchen hat sich Deep Learning in den vergangenen Jahren in der Bildverarbeitungsbranche zu einem Megatrend entwickelt, der auch die VISION 2018 prägen wird. Florian Niethammer von der Messe Stuttgart, Projektleiter der VISION, zeigt sich angesichts dieser technischen Entwicklungen überzeugt, dass die VISION 2018 eine der spannendsten Messeausgabe überhaupt wird: „Es wird extrem aufregend, zu sehen, wie die Austeller das Trendthema Deep Learning bespielen und mit etablierter Bildverarbeitung sowie Embedded Vision verknüpfen. Ganz nach unserem Kampagnenmotto ‚BE VISIONARY‘ erwarten wir vom 6. bis 8. November in Stuttgart ein Feuerwerk an neuen Produkten und Lösungen, von denen viele noch vor zwei Jahren auf der letzten VISION nicht einmal angedacht waren.“ Deep Learning-Systeme als ein Teilbereich von Machine Learning und Künstlicher Intelligenz haben einen grundlegend anderen technologischen Ansatz als die derzeit etablierte Bildverarbeitungstechnik: „Sie setzen neuronale Netze ein und ihr Name bezieht sich auf die meist hohe Anzahl verborgener Schichten im neuronalen Netzwerk“, erläutert VISION-Aussteller und CEO von Irida Labs, Vassilis Tsagaris. Systeme, die auf Deep Learning basieren zeichnen sich dadurch aus, „dass große Mengen an digitalen Bilddaten analysiert und damit Modelle von bestimmten, zu erkennenden Objekten trainiert werden“, ergänzt Dr. Olaf Munkelt, Geschäftsführer der MVTec Software GmbH. „Mit Hilfe dieser Trainingsdaten lernt der Klassifikator dann, zwischen den eingegebenen Klassen zu unterscheiden“, so der langjährige VISION-Aussteller weiter. Flexible Entscheidungen als Vorteil „Die Stärke von Deep Learning liegt darin, dass ein solcher Ansatz flexibler entscheiden kann als ein Satz vorgegebener Regeln in konventionellen Bildverarbeitungs-Systemen“, betont Volker Gimple, Gruppenleiter Bildverarbeitung bei der Stemmer Imaging AG. Dr. Klaus-Henning Noffz, Geschäftsführer von Silicon Software, ergänzt: „Deep Learning punktet immer dann, wenn Prüfobjekte große Variationen aufweisen und schwer mathematisch modellierbar sind.“ Deep Learning kann somit überall dort eine Alternative sein, wo konventionelle Bildverarbeitungssysteme an ihre Grenzen stoßen: „Deren größte Herausforderungen sind ein sich veränderndes optisches Umfeld, die immer größere Produktvielfalt sowie die Komplexität des Bildes selbst“, sagt Hanjun Kim, Marketing Manager bei Sualab. “Auch in Bereichen, wo Bildverarbeitung bereits implementiert ist, kann der zusätzliche Einsatz von Deep Learning Genauigkeit und Geschwindigkeit des Prüfvorgangs drastisch beschleunigen.“ Der südkoreanische Softwarespezialist stellt auf der VISION 2018 zum ersten Mal aus und plant die Vorstellung seiner Deep Learning Machine Vision Inspektionssoftware ‘SuaKIT v2.0’. Bereits vielfältige Anwendungen Eingesetzt wird Deep Learning heute bereits in Anwendungen, wo Bildverarbeitung eine Klassifizierung des untersuchten Objekts vornimmt. Dr. Klaus-Henning Noffz beschreibt eine Anwendung aus dem Automobilbau: „Selbstlernende Algorithmen erkennen hier mit Hilfe von Deep Learning beispielsweise perfekt winzige Lackfehler, die mit bloßem Auge nicht sichtbar sind“. Auch die Nahrungsmittel- und Getränkeindustrie, ein Anwendungsbereich, der auf der VISION unter anderem mit dem ‚Food & Beverage‘-Label in den letzten Jahren immer mehr Beachtung gefunden hat, profitiert von Deep-Learning-Technologien. „So können beispielsweise minderwertige Früchte und Gemüse präzise identifiziert und inspiziert werden, bevor sie verpackt oder weiterverarbeitet werden“, erläutert Dr. Olaf Munkelt. Dr. Christopher Scheubel, Head of IP & Business Development bei Framos, ein VISION-Aussteller der ersten Stunde, beschreibt eine Anwendung, bei der mit Deep Learning Gebinde für einen Lebensmitteleinzelhändler sortiert und klassifiziert werden. Deepsense, ein weiterer Erstaussteller auf der VISION 2018, wird eine Lösung zur visuellen Qualitätskontrolle vorstellen, die sich ohne langwierige Programmierung sehr gut zur Inspektion gerade von Objekten mit komplexen Mustern wie etwa Holz oder Textilien eignet. Robert Bogucki, Chief Science Officer bei Deepsense, sieht darüber hinaus große zukünftige Anwendungschancen von Deep Learning im Bereich Healthcare. Verdrängt oder ergänzt Deep Learning etablierte Systeme? Auch wenn bei der Anwendung von Deep Learning Herausforderungen bleiben, wie etwa die Ausführungszeiten und der Trainingsaufwand für die neuronalen Netze, ist man sich etwa bei Framos sicher, dass alle klassifizierenden Ansätze z.B. bei der Qualitätsüberwachung oder beim Sortieren mittelfristig von Deep Learing dominiert werden. Auch Dr. Klaus-Henning Noffz ist überzeugt: „Mit dem Ansatz trainieren statt programmieren‘ kann Deep Learning eine sehr hohe Verbreitung erzielen. So sind Klassifikationsaufgaben wesentlich einfacher zu lösen als mit den existierenden algorithmischen Methoden. Für viele weitere Aufgabe stellungen qualifi- 6 PC & Industrie 8/2018

Aktuelles Embedded Vision System zum Erfassen und Zählen von Fahrzeugen und Personen basierend auf einem Region-based CNN (R-CNN) (Bildquelle: Neadvance) zieren sich neuronale Netze ganz besonders, wie etwa für reflektierende Oberflächen, schlecht ausgeleuchtete Umgebungen, bewegende Objekte, Robotik und 3D.“ Auch bei Neadvance, ein portugiesischer Erstausteller der VISION 2018, teilt man diese Überzeugung: „Anwendungsbereiche, bei denen Objekterkennung oder -klassifizierung das Primärziel sind, werden sich eindeutig von traditionellen Ansätzen hin zu Deep Learning bewegen, etwa bei Texturanalysen, Template Matching, OCR, Lagebestimmungen, Analyse von urbanen Szenen und Handschriftenerkennung.“ Nichtsdestotrotz kann eine Kombination mit klassischer Bildverarbeitung sinnvoll sein, um eine hundertprozentige Klassifizierung zu gewährleisten, bestätigt Vassilis Tsagaris, CEO von Irida Labs: „Es wird nicht lange dauern, bis wir mehr und mehr „hybride“ Systeme sehen werden, da oftmals neben Deep Learning eben auch Computer Vision-Algorithmen benötigt werden, die ihre Robustheit bereits unter Beweis gestellt haben.“ Volker Gimple ist ebenfalls überzeugt, dass viele Bereiche bleiben, in denen sich konventionelle Methoden behaupten können, weil diese ein entscheidendes Merkmal bieten, das Machine Learning-Ansätzen in der Regel fehlt: „Die Nachvollziehbarkeit von Entscheidungen und Fehlentscheidungen“. Deep Learning auf Embedded Devices Deep-Learning-Anwendungen können auch auf Embedded- Vision-Geräten ausgeführt werden. „Auf dem weit verbreiteten Embedded-Board NVIDIA Jetson TX2 läuft auch die Deep-Learning-Inferenz von MVTec HALCON“, bestätigt Dr. Olaf Munkelt. So entstünde gerade im dezentralen Computing- Ansatz von Industrie 4.0 auch vermehrt Bedarf an Embedded Vision mit Deep Learning-Lösungen, bei denen kleine Bildverarbeitungseinheiten oder intelligente Kameras anspruchsvolle Teilaufgaben Screenshot Visual Debugger (Bildquelle: SUALAB) übernehmen können. Silicon Software plant auf der VISION 2018 die Vorstellung seiner Deep-Learning-Lösung unter Visual Applets auf einem Field Programmable Gate Array (FPGA). Auch Irida Labs wird eine solche Verknüpfung der derzeitigen Mega trends Embedded Vision und Deep Learning auf der VISION 2018 präsentieren. Ihr DeepAPI-Framework ist eine Bibliothek zur Implementierung von Deep Learning an jedem Embedded-Gerät, das mit einer begrenzten Bilderzahl bereits zur Qualitätsprüfung eingesetzt werden kann. Über die VISION Die VISION, die Weltleitmesse für Bildverarbeitung findet dieses Jahr vom 6. bis zum 8. November in Stuttgart statt. Im zweijährigen Turnus bildet die Fachmesse das komplette Spektrum der Bildverarbeitungstechnologie ab. Neben hochkarätigen Ausstellern zeichnet sie sich seither durch ihre hohe Internationalität und ein abwechslungsreiches Rahmenprogramm aus: Fester Bestandteil der Messe sind auch 2018 die „Industrial VISION Days“, das weltweit größte Vortragsforum für Bildverarbeitung. Weitere Highlights sind die „Integration Area“, die Sonderschau zu den „International Machine Vision Standards“ unter Federführung der EMVA, sowie der IPC4Vision-Stand, auf dem das Thema Industrie-PCs (IPCs) bespielt wird. ◄ PC & Industrie 8/2018 7

Fachzeitschriften

6-2019
5-2019
2-2019
2-2019
2-2019

hf-praxis

5-2019
4-2019
3-2019
2-2019
1-2019
Best_Of_2018
12-2018
11-2018
10-2018
9-2018
8-2018
7-2018
6-2018
5-2018
4-2018
3-2018
2-2018
1-2018
EF 2018/2019
12-2017
11-2017
10-2017
9-2017
8-2017
7-2017
6-2017
5-2017
4-2017
3-2017
2-2017
1-2017
EF 2017/2018
12-2016
11-2016
10-2016
9-2016
8-2016
7-2016
6-2016
5-2016
4-2016
3-2016
2-2016
1-2016
2016/2017
12-2015
11-2015
10-2015
9-2015
8-2015
7-2015
6-2015
5-2015
4-2015
3-2015
2-2015
1-2015
12-2014
11-2014
10-2014
9-2014
8-2014
7-2014
6-2014
5-2014
4-2014
2-2014
1-2014
12-2013
11-2013
10-2013
9-2013
8-2013
7-2013
6-2013
5-2013
4-2013
3-2013
2-2013
12-2012
11-2012
10-2012
9-2012
8-2012
7-2012
6-2012
4-2012
3-2012
2-2012
1-2012

PC & Industrie

6-2019
5-2019
4-2019
3-2019
1-2-2019
EF 2019
12-2018
11-2018
10-2018
9-2018
8-2018
7-2018
6-2018
5-2018
4-2018
3-2018
1-2-2018
EF 2018
EF 2018
12-2017
11-2017
10-2017
9-2017
8-2017
7-2017
6-2017
5-2017
4-2017
3-2017
1-2-2017
EF 2017
EF 2017
11-2016
10-2016
9-2016
8-2016
7-2016
6-2016
5-2016
4-2016
3-2016
2-2016
1-2016
EF 2016
EF 2016
12-2015
11-2015
10-2015
9-2015
8-2015
7-2015
6-2015
5-2015
4-2015
3-2015
2-2015
1-2015
EF 2015
EF 2015
11-2014
9-2014
8-2014
7-2014
6-2014
5-2014
4-2014
3-2014
2-2014
1-2014
EF 2014
12-2013
11-2013
10-2013
9-2013
8-2013
7-2013
6-2013
5-2013
4-2013
3-2013
2-2013
1-2013
12-2012
11-2012
10-2012
9-2012
8-2012
7-2012
6-2012
5-2012
4-2012
3-2012
2-2012
1-2012

meditronic-journal

2-2019
1-2019
5-2018
4-2018
3-2018
2-2018
1-2018
4-2017
3-2017
2-2017
1-2017
4-2016
3-2016
2-2016
1-2016
4-2015
3-2015
2-2015
1-2015
4-2014
3-2014
2-2014
1-2014
4-2013
3-2013
2-2013
1-2013
4-2012
3-2012
2-2012
1-2012

electronic fab

2-2019
1-2019
4-2018
3-2018
2-2018
1-2018
4-2017
3-2017
2-2017
1-2017
4-2016
3-2016
2-2016
1-2016
4-2015
3-2015
2-2015
1-2015
4-2014
3-2014
2-2014
1-2014
4-2013
3-2013
2-2013
1-2013
4-2012
3-2012
2-2012
1-2012

Haus und Elektronik

2-2019
1-2019
4-2018
3-2018
2-2018
1-2018
4-2017
3-2017
2-2017
1-2017
4-2016
3-2016
2-2016
1-2016
4-2015
3-2015
2-2015
1-2015
4-2014
3-2014
2-2014
1/2014
4-2013
3-2013
2-2013
1-2013
4-2012
3-2012
2-2012
1-2012

Mediadaten

2019 deutsch
2019 english
2019 deutsch
2019 english
2019 deutsch
2019 english
2019 deutsch
2019 english
2019 deutsch
2019 english
© beam-Verlag Dipl.-Ing. Reinhard Birchel