Herzlich Willkommen beim beam-Verlag in Marburg, dem Fachverlag für anspruchsvolle Elektronik-Literatur.


Wir freuen uns, Sie auf unserem ePaper-Kiosk begrüßen zu können.

Aufrufe
vor 1 Jahr

4-2019

  • Text
  • Komponenten
  • Technik
  • Radio
  • Filter
  • Quarze
  • Emv
  • Messtechnik
  • Bauelemente
  • Amplifier
  • Wireless
  • Antenna
  • Oszillatoren
Fachzeitschrift für Hochfrequenz- und Mikrowellentechnik

Titelstory Bild 4:

Titelstory Bild 4: Aufbau eines MEMS-basierten Oszillators. Bild 5: Schematische Darstellung eines MEMS-Oszillators sowie weitere Einstellungen wie Temperaturkalibrierung, Wahl des Ausgabeprotokolls, Steuerung der Anstiegs- und Abfallzeit, Aktivierung des Pin-Pullup/-down und vieles mehr. Der Temperatursensor (TEMP SENSOR) erzeugt eine digitale Darstellung der Chip-Temperatur, die an die PLL weitergegeben wird, um die natürlichen Spannen in der absoluten Frequenz des Resonators sowie dessen Temperaturkoeffizienten zu korrigieren. Das System wird in der Fertigung kalibriert und das Ergebnis ist eine Ausgangsfrequenz, die auf etwa 100 Hz programmierbar und über erweiterte Temperaturbereiche mit bis ±10ppm extrem stabil ist (s. Bild 7). Vorteile einer MEMS-Lösung MEMS-Oszillatoren sind für die meisten Standardanwendungen problemlos geeignet. Jedoch ist zu beachten, dass sie ein vergleichsweise hohes Phasenrauschen und einen höheren Jitter aufweisen können. Wird die Frequenz eines Oszillators mithilfe einer PLL erzeugt, hat das Ausgangssignal meist höhere Werte für Jitter bzw. Bild 6: Blockschaltbild des Microchip DSC2xxx 28 hf-praxis 4/2019

Titelstory Faktor Quarzoszillator MEMS-Oszillator Funktionsmerkmale Frequenzstabilität über den Temperaturbereich Phasenrauschen als bei direkter, ausschließlich quarzbasierter Frequenzerzeugung. Das gilt natürlich auch für die MEMS- Oszillatoren, deren Oszillator- ASIC stets PLL-basiert arbeitet. Mittlerweile kommen aber hochentwickelte ASIC/PLL- Bausteine zum Einsatz, deren Jitter-Spezifikation einen Vergleich mit anderen PLL-Oszillatoren und selbst mit quarzbasierten Oszillatoren nicht mehr scheuen muss. mittel optimal MEMS bietet ±10 ppm über einen weiten Temperaturbereich und eine überlegene Alterung. Größe gut optimal MEMS bietet eine extrem kleine Grundfläche (1,6 x 1,2 mm) – branchenführend in der Größenreduktion Zuverlässigkeit mittel optimal MEMS-Wafer in hermetischer Versiegelung, getrennte Gehäuse für Quarz und ASIC Close-in-Jitter/ Phasenrauschen gut mittel quarzbasierter Oszillator ist überlegen mit reduziertem Close-in-Phasenrauschen, bei hohem Frequenz-Offset MEMSund quarzbasierter Oszillator vergleichbar Funktionen schlecht optimal wählbare Frequenzen an einem Ausgang, jederzeit OTPprogrammierbar bei jeder Frequenz Start-up mittel optimal MEMS erreicht schnelle Anlaufzeiten (

Fachzeitschriften

9-2020
8-2020
3-2020
3-2020
3-2020

hf-praxis

7-2020
6-2020
5-2020
4-2020
3-2020
2-2020
1-2020
12-2019
11-2019
10-2019
9-2019
8-2019
7-2019
6-2019
5-2019
4-2019
3-2019
2-2019
1-2019
EF 2019-2020
Best_Of_2018
12-2018
11-2018
10-2018
9-2018
8-2018
7-2018
6-2018
5-2018
4-2018
3-2018
2-2018
1-2018
EF 2018/2019
12-2017
11-2017
10-2017
9-2017
8-2017
7-2017
6-2017
5-2017
4-2017
3-2017
2-2017
1-2017
EF 2017/2018
12-2016
11-2016
10-2016
9-2016
8-2016
7-2016
6-2016
5-2016
4-2016
3-2016
2-2016
1-2016
2016/2017
12-2015
11-2015
10-2015
9-2015
8-2015
7-2015
6-2015
5-2015
4-2015
3-2015
2-2015
1-2015
12-2014
11-2014
10-2014
9-2014
8-2014
7-2014
6-2014
5-2014
4-2014
2-2014
1-2014
12-2013
11-2013
10-2013
9-2013
8-2013
7-2013
6-2013
5-2013
4-2013
3-2013
2-2013
12-2012
11-2012
10-2012
9-2012
8-2012
7-2012
6-2012
4-2012
3-2012
2-2012
1-2012

PC & Industrie

9-2020
8-2020
7-2020
6-2020
5-2020
4-2020
3-2020
1-2-2020
EF 2020
EF-Mess2020
12-2019
11-2019
10-2019
9-2019
1-2-2019
8-2019
7-2019
6-2019
5-2019
4-2019
3-2019
EF 2019
EF 2019
12-2018
11-2018
10-2018
9-2018
8-2018
7-2018
6-2018
5-2018
4-2018
3-2018
1-2-2018
EF 2018
EF 2018
12-2017
11-2017
10-2017
9-2017
8-2017
7-2017
6-2017
5-2017
4-2017
3-2017
1-2-2017
EF 2017
EF 2017
11-2016
10-2016
9-2016
8-2016
7-2016
6-2016
5-2016
4-2016
3-2016
2-2016
1-2016
EF 2016
EF 2016
12-2015
11-2015
10-2015
9-2015
8-2015
7-2015
6-2015
5-2015
4-2015
3-2015
2-2015
1-2015
EF 2015
EF 2015
11-2014
9-2014
8-2014
7-2014
6-2014
5-2014
4-2014
3-2014
2-2014
1-2014
EF 2014
12-2013
11-2013
10-2013
9-2013
8-2013
7-2013
6-2013
5-2013
4-2013
3-2013
2-2013
1-2013
12-2012
11-2012
10-2012
9-2012
8-2012
7-2012
6-2012
5-2012
4-2012
3-2012
2-2012
1-2012

meditronic-journal

3-2020
2-2020
1-2020
4-2019
3-2019
2-2019
1-2019
5-2018
4-2018
3-2018
2-2018
1-2018
4-2017
3-2017
2-2017
1-2017
4-2016
3-2016
2-2016
1-2016
4-2015
3-2015
2-2015
1-2015
4-2014
3-2014
2-2014
1-2014
4-2013
3-2013
2-2013
1-2013
4-2012
3-2012
2-2012
1-2012

electronic fab

2-2020
1-2020
3-2020
4-2019
3-2019
2-2019
1-2019
4-2018
3-2018
2-2018
1-2018
4-2017
3-2017
2-2017
1-2017
4-2016
3-2016
2-2016
1-2016
4-2015
3-2015
2-2015
1-2015
4-2014
3-2014
2-2014
1-2014
4-2013
3-2013
2-2013
1-2013
4-2012
3-2012
2-2012
1-2012

Haus und Elektronik

3-2020
2-2020
1-2020
4-2019
3-2019
2-2019
1-2019
4-2018
3-2018
2-2018
1-2018
4-2017
3-2017
2-2017
1-2017
4-2016
3-2016
2-2016
1-2016
4-2015
3-2015
2-2015
1-2015
4-2014
3-2014
2-2014
1/2014
4-2013
3-2013
2-2013
1-2013
4-2012
3-2012
2-2012
1-2012

Mediadaten

2020 - deutsch
2020 - english
2020 - deutsch
2020 - english
2020 - deutsch
2020 - english
2020 - deutsch
2020 - english
2020 - deutsch
2020 - english
2019 deutsch
2019 english
2019 deutsch
2019 english
2019 deutsch
2019 english
2019 deutsch
2019 english
2019 deutsch
2019 english
© beam-Verlag Dipl.-Ing. Reinhard Birchel