Herzlich Willkommen beim beam-Verlag in Marburg, dem Fachverlag für anspruchsvolle Elektronik-Literatur.


Wir freuen uns, Sie auf unserem ePaper-Kiosk begrüßen zu können.

Aufrufe
vor 1 Jahr

4-2022

  • Text
  • Medical pc
  • Medizinelektronik
  • Medizintechnik
  • Medizinischen
Fachzeitschrift für Medizintechnik-Produktion, Entwicklung, Distribution und Qualitätsmanagement

Produktion Aufbau- und

Produktion Aufbau- und Verbindungsstrategien von optischen Glasfasern Klebstofffreie Faser-zu-Chip-Anbindung durch direktes Laserschweißen für die integrierte Photonik Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM www.izm.fraunhofer.de Aufbau- und Verbindungsstrategien von optischen Glasfasern mit photonischen integrierten Schaltkreisen (PICs) werden üblicherweise mit Klebstoffen realisiert. Doch diese Verbindungstechnik kann langfristig zu optischer Degradation und dadurch zu hohen optischen Übertragungsverlusten führen, welche für kritische Anwendungen, wie in der Medizintechnik und Life Science, fatal sind. Klebstofffreies, platzsparendes und robustes Laserschweißverfahren Im Rahmen des Eurostars-Projekts „PICWeld“ entwickelten Forschende des Fraunhofer IZM in Zusammenarbeit mit den Partnern LioniX International BV, Phix Photonics Assembly und ficonTEC Service GmbH, ein klebstofffreies, platzsparendes und robustes Laserschweißverfahren zur Fixierung von Glas fasern an PICs. Durch die Integration des Verfahrens in eine automatisierte Justageanlage wurde die industrielle Reife des Systems gezeigt, was die Glas-Glas-Verbindungstechnik für einen kommerziellen Einsatz sehr attraktiv macht. Wechselwirkungen zwischen Licht und Materie Schon lange ist bekannt, dass biochemische Prozesse von Organfunktionen über die Temperaturregulierung bis hin zur Hormonproduktion maßgeblich von Licht beeinflusst werden. Inzwischen ist die Forschung rund um Licht und Körper weit vorangeschritten, junge Disziplinen wie die Life Science und Biophotonik beschäftigen sich mit Fragen, die sich am Schnittpunkt der Naturwissenschaften und Medizin befinden. Mit hochpräzisen und komplexen Messungen können damit Informationen darüber gewonnen werden, wie sich die Wechselwirkungen zwischen Licht und Materie gestalten, zum Beispiel bei der Untersuchung der Struktur von Zellen und Geweben, die für Krebserkrankungen relevant sind. Rolle des sichtbaren Lichts in biologischen Prozessen zeigen Doch Einblicke in das Innerste zu erhalten, ist kein leichtes Unterfangen: Kürzlich wurden miniaturisierte Systeme basierend auf photonisch integrierten Schaltkreisen mit hochstabilen Faserverbindungen vorgeschlagen, um die Rolle des sichtbaren Lichts in biologischen Prozessen nachvollziehen zu können. Genau an dieser Stelle setzte das Fraunhofer IZM im BMBF-geförderten Eurostars-Projekt „PICWeld“ an und entwickelte ein gänzlich neuartiges Laserschweißverfahren, mit dem optische Fasern direkt mit PICs auf Quarzglas verschweißt werden können. Mit Hilfe des Partners ficonTEC 18 meditronic-journal 4/2022

Produktion Service GmbH wurde dieses Verfahren in einer automatischen Anlage umgesetzt, die eine hohe Reproduzierbarkeit und Skalierbarkeit bietet. Ziel: robuste und transparente Glas-Glas- Verbindung Das Forschungsteam rund um Dr. Alethea Vanessa Zamora Gómez hat es sich zur Aufgabe gemacht, Glas-Glas-Verbindungen einfacher, robuster und langlebiger zu gestalten. Dabei werden die diskreten optischen Bauteile mit einem Klebstoff verbunden. Durch die Weichheit des Klebstoffs kann sich die Position des Bauteils über die Zeit ändern, zudem stellt er eine Störstelle zwischen den beiden Glasschichten dar, die eine Dämpfung des Signals verursacht und nach Alterung des Klebstoffs brüchig werden kann. Die Langzeit stabilität ist daher oft kritisch. Um diese Nachteile der Verbindungstechnik zu umgehen, haben die Forschenden einen Prozess des CO 2 - Laserschweißens entwickelt und realisieren damit erstmals eine direkte, thermisch robuste und transparente Glas-Glas-Verbindung. Neue, automatisierte Prozessanlage Um das Laserschweißen für zuverlässige Quarzglasverbindungen jedoch nicht nur experimentell durchzuführen, sondern der Industrialisierung und hohen Skalierbarkeit einen Schritt näher zu kommen, wurde eine gänzlich neue, automatisierte Prozessanlage entworfen und hergestellt. Die entstandene Anlage ermöglicht eine im Interface klebstofffreie und polarisationserhaltende, hocheffiziente Kopplung zwischen optischen Quarzglas-Fasern und Quarzglas-PICs mit integrierten Wellenleitern. Doch bis zur Umsetzung anwendungstauglicher Verbindungen mussten die Forschenden eine Reihe technologischer Herausforderungen bewältigen. Da Glasfasern und Substrate unterschiedliche Volumina haben, sind auch die Wärmekapazitäten der beiden Fügepartner ungleich. Diese Diskrepanz resultiert in einem stark unterschiedlichen Aufheiz- und Abkühlverhalten, was z. B. zu Deformationen oder Rissen beim Abkühlen führen kann. Die Lösung der Photonik-Experten lag darin, das Substrat mittels eines separaten und individuell anpassbaren Lasers homogen vorzuheizen, so dass die Schmelzphase der Faser und des Substrats dennoch gleich zeitig erreicht wird. Erfolgreicher Einsatz Die Anlage, die mit thermischer Prozessüberwachung bis 1300 °C, einem bis auf 1 µm genauen Positioniersystem, einem Bilderkennungsverfahren sowie einer Steuerungssoftware ausgestattet ist, schweißte bereits im Laufe des Projekts erste Verbindungen, so dass die Funktionsfähigkeit getestet und erste prozessorientierte Messungen durchgeführt wurden. Folgeprojekte Nach dem PICWeld-Abschluss im Jahr 2021 ergaben sich nahtlos erste Folgeprojekte, in denen die neue Technologie zum Faserkoppeln von Kollimatoren, Wellenleiterchips und Multilinsenarrays genutzt wurde. „Mit unserer Anlage zum CO 2 -Laserschweißen haben wir das bisherige Verfahrensprinzip erweitert: Insbesondere das hohe Automatisierungspotenzial ermöglicht es den Kunden, PICs mit höchster Kopplungseffizienz zu verwenden. In der Industrie integriert, bedeutet das einen Sprung für die Anwendungsbereiche der Biophotonik, aber auch der Quantenkommunikation und Hochleistungsphotonik“, erklärt die Projektleiterin am Fraunhofer IZM, Dr. Alethea Vanessa Zamora Gómez. Förderung Bundesministerium für Bildung und Forschung (BMBF) mit dem Förderkennzeichen 01QE1744C. Es gehört zum Eurostars-Programm (11324), in dessen Rahmen eine Zusammenarbeit mit Lionix International BV, Phix Photonics Assembly und ficonTEC Service GmbH erfolgt ist. ◄ MEDIZINTECHNIK-PRODUKTION. VOLLAUTOMATISIERT. Maßgeschneiderte und schlüsselfertige Produktionsanlagen mit integrierter Dosiertechnik sorgen für die hochpräzise und ultraschnelle Herstellung Ihrer medizintechnischen Geräte und Produkte. JETZT ANMELDEN: Technologietag Vom Prototypenbau über ergonomische Betriebsmittel für Klein- und Mittelserien bis hin zur automatisierten Serienfertigung 20. September 2022 Zimmern ob Rottweil Prototyp Mittelserie Großserie Kontaktieren Sie uns! production.systems@rampf-group.com www.rampf-group.com meditronic-journal 4/2022 19

hf-praxis

PC & Industrie

© beam-Verlag Dipl.-Ing. Reinhard Birchel